翻訳と辞書 |
Lafforgue's theorem : ウィキペディア英語版 | Lafforgue's theorem In mathematics, Lafforgue's theorem, due to Laurent Lafforgue, completes the Langlands program for general linear groups over algebraic function fields, by giving a correspondence between automorphic forms on these groups and representations of Galois groups. The Langlands conjectures were introduced by and describe a correspondence between representations of the Weil group of an algebraic function field and representations of algebraic groups over the function field, generalizing class field theory of function fields from abelian Galois groups to non-abelian Galois groups. ==Langlands conjectures for GL1== The Langlands conjectures for GL1(''K'') follow from (and are essentially equivalent to) class field theory. More precisely the Artin map gives a map from the idele class group to the abelianization of the Weil group.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lafforgue's theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|